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Abstract. The simple modules with character height at most one for the restricted Witt al-
gebras are considered. Their classification, construction, and dimension formulas are reduced
to the same for the general linear algebra. Results of Chang and Shen are recovered in the
process.

0. Introduction

Fix n ≥ 1 and let W = W (n,1) be the restricted Witt algebra over an algebraically
closed field F of characteristic p ≥ 5. Let χ ∈ W ∗ = HomF (W,F ). A W -module M has
character χ provided

Dp ·m−D[p] ·m = χ(D)pm

for all D ∈ W , m ∈ M . Not every module has a character, but at least every simple module
has one [SF, Theorem 2.5, p. 207]. Note that restricted modules have the character χ = 0.

Let W =
∑̇

iWi be the standard grading on W and put W i =
∑

j≥i Wj . Implicit in
Chang’s work [C], but first defined for the algebra W (1,1) by Strade in [St], is the useful
notion of the height htχ of the character χ:

ht χ = min{i ≥ −1 |χ(W i) = 0}.

In this paper, we classify the simple W -modules having character χ of height at most
one (i.e., with htχ ∈ {−1, 0, 1}) and compute their dimensions (up to the corresponding
data for the simple modules for W0

∼= gln(F )). The determination of the simple restricted
modules (i.e., the case htχ = −1) was completed by Shen in [Sh]. Also, Chang [C]
constructed the simple modules (with arbitrary character) for W (1,1) and Koreshkov [K]
obtained some results in regard to the simple modules for W (2,1). We give a uniform
treatment of the three cases ht χ = −1, 0, 1 and recover some of these authors’ results in
the process.
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We begin in Section 1 by determining a convenient representative for the orbit of χ

under the conjugacy action of the group of (restricted) automorphisms of W . For our
purposes, χ may often be replaced by this character, with the advantage being that certain
arguments are thus simplified. In Section 2, we show that most of the simple modules are
obtained by starting with a simple W0-module, extending the action trivially to W 1, and
inducing to W . (It is this construction that requires our main assumption htχ ≤ 1.) In
Section 3 we consider the few exceptional cases where these induced modules are not simple
and determine their structures by identifying them with the terms in the usual de Rham
complex for W (or a modified such complex in the case htχ = 0). Finally, in Section 4 we
assemble the results and state the main theorems.

I thank Dan Nakano for a couple of conversations that prompted this research. I also
thank the referee for some helpful suggestions.

1. Character Orbit Representatives

Let a, b ∈ Zn. We write a ≤ b if ai ≤ bi for all 1 ≤ i ≤ n and we write a < b if a ≤ b

but a 6= b. If a, b ≥ 0, define
(
a
b

)
=

∏
i

(
ai

bi

)
, where

(
ai

bi

)
is the usual binomial coefficient

with the convention that
(
ai

bi

)
= 0 unless bi ≤ ai. Set A = {a ∈ Zn | 0 ≤ a ≤ τ}, where

τ := (p − 1, . . . , p − 1). The divided power algebra A is the associative F -algebra having
F -basis {x(a) | a ∈ A} and multiplication subject to the rule

x(a)x(b) =
(

a + b

a

)
x(a+b),

where x(c) := 0 if c /∈ A.
For each 1 ≤ i ≤ n, let Di denote the derivation of A uniquely determined by the

property Dix
(a) = x(a−εi), where εi is the n-tuple with jth entry δij (= Kronecker delta).

Then the Witt algebra W is the restricted Lie algebra DerF A =
∑

i ADi, which has
F -basis {x(a)Di | a ∈ A, 1 ≤ i ≤ n}. The bracket product in W satisfies

[x(a)Di, x
(b)Dj ] =

(
a + b− εi

a

)
x(a+b−εi)Dj −

(
a + b− εj

b

)
x(a+b−εj)Di,

and the p-mapping is p-fold composition: D[p] := Dp (D ∈ W ). Putting xi = x(εi), we
have (xiDi)[p] = xiDi and (x(a)Di)[p] = 0 if a 6= εi (1 ≤ i ≤ n).

Given a ∈ Zn, set |a| =
∑

i ai. Defining Ak = 〈x(a) | a ∈ A, |a| = k〉 and Wk =∑
j Ak+1Dj we have A =

∑̇s+1

k=0Ak and W =
∑̇s

k=−1Wk, where s = n(p−1)−1. Moreover,
AkAl ⊆ Ak+l, [Wk,Wl] ⊆ Wk+l, and (Wk)[p] ⊆ Wpk (k, l ∈ Z). In particular, W0 is a
restricted Lie subalgebra of W ; it is isomorphic to the general linear algebra gln(F ) via
the map xiDj 7→ eij (= n× n-matrix with 1 in the (i, j)-position and zeros elsewhere).



SIMPLE MODULES FOR WITT ALGEBRAS 3

Let ϕ : V → U be a linear transformation of vector spaces over F . Denote by ϕ∗ :
U∗ → V ∗ the dual (transpose) map given by [ϕ∗(f)](v) = f(ϕ(v)) (f ∈ U∗, v ∈ V ). If
V =

∑
i Vi and U =

∑
i Ui are gradings, we denote by ϕi the restriction of ϕ to Vi, and

we say ϕ is homogeneous provided ϕ(Vi) ⊆ Ui for each i.
Following Wilson [W], we use Aut∗ A to denote the group of homogeneous automor-

phisms of A. We write Aut W for the group of automorphisms of W . Note that, since W

is centerless, each Φ ∈ Aut W is automatically restricted, meaning Φ(D[p]) = Φ(D)[p] for
all D ∈ W . Putting Aut∗W = {Φ ∈ AutW |Φ is homogeneous } and Aut1 W = {Φ ∈
Aut W | (Φ − 1W )(Wi) ⊆

∑
j>i Wj for each i}, we have Aut W = Aut∗W n Aut1 W [W,

Theorem 2 and its following remark].
The space A1 has basis {x1, . . . , xn}. Since Dixj = δij , we can regard {D1, . . . , Dn}

as the dual basis of {x1, . . . , xn} and hence identify W−1 with A∗1. The following result is
essentially an extraction of a portion of a proof in [W] which we will require.

1.1 Lemma. The function Aut∗W → GL((W−1)∗) given by Φ 7→ ((Φ−1)∗)−1 is a group
isomorphism.

Proof. According to [W, Theorem 2(b, c)], we have an isomorphism Aut∗W → GL(A1) =
GL((W−1)∗) given by Φ 7→ ϕ1, where ϕ is the unique element of Aut∗ A (= Aut∗(A,W )
as defined in [W]) satisfying Φ(D) = ϕDϕ−1 for all D ∈ W . Therefore, it suffices to show
that Φ−1 = (ϕ−1

1 )∗. For D ∈ W−1, we have im Dϕ−1
1 ⊆ F ⊆ A. Therefore, since ϕ fixes

the elements of F , we have Φ−1(D) = ϕDϕ−1
1 = Dϕ−1

1 = (ϕ−1
1 )∗(D) for all D ∈ W−1

(= (A1)∗), and the proof is complete. ¤

The group Aut W acts on the set W ∗ according to the rule χΦ(D) = χ(Φ(D)) (χ ∈ W ∗,
Φ ∈ AutW , D ∈ W ).

1.2 Theorem. Let χ ∈ W ∗.

(1) If Φ ∈ Aut W , then htχΦ = htχ.
(2) If χ−1 6= 0, then there exists Φ ∈ Aut∗W such that χΦ(Di) = δin (1 ≤ i ≤ n).
(3) If htχ = 1, then there exists Φ ∈ Aut W such that χΦ(W−1) = 0 and χΦ(xiDj) = 0

for all 1 ≤ i < j ≤ n.

Proof. (1) Since Aut W = Aut∗W n Aut1 W , it is enough to check the two cases Φ ∈
Aut∗W and Φ ∈ Aut1 W , each of which is clear.

(2) Assume χ−1 6= 0. Let η be the element of (W−1)∗ given by η(Di) = δin (1 ≤ i ≤ n).
By elementary linear algebra, there exists ψ ∈ GL((W−1)∗) such that ψ(η) = χ−1. By
1.1, there exists Φ ∈ Aut∗W such that ((Φ−1)∗)−1 = ψ. Then (χΦ)−1 = (Φ−1)∗(χ−1) =
ψ−1(χ−1) = η.

(3) Assume ht(χ) = 1. First suppose χ−1 6= 0. By parts (1) and (2), we may assume
χ(Di) = δin (1 ≤ i ≤ n). Since χ0 6= 0, we have χ(xiDj) 6= 0 for some 1 ≤ i, j ≤ n. We
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assume i to be chosen maximal with respect to this property. Set c = χ(xiDj)−12−δin .
According to [W, Theorem 1], there exists Φ ∈ Aut W such that Φ(Dk)− [cxixnDj , Dk]−
Dk ∈ W 1 for each k. Since htχ = 1, we have χ(W 1) = 0. Therefore,

χΦ(Dk) = χ(Φ(Dk)) = cχ([xixnDj , Dk]) + χ(Dk).

If k 6= n, then χ([xixnDj , Dk]) = 0 (using maximality of i), which implies χΦ(Dk) = 0.
Also, [xixnDj , Dn] = −2δinxiDj , so χΦ(Dn) = 0. Therefore, we may assume χ(W−1) = 0.

Let D ∈ W0. We have D =
∑

bijxiDj and χ0 =
∑

cij(xiDj)∗ (bij , cij ∈ F ), where
(xiDj)∗(xkDl) = δikδjl. Set B = (bij) and C = (cij). It is easy to check that χ0(D) =
tr tCB, where tC denotes the transpose of the matrix C. Choose G = (gij) ∈ GLn(F )
such that GCG−1 is lower triangular. Let ψ ∈ GL(A1) be given by ψ(xj) =

∑
i gjixi. As

in the proof of 1.1, there exists Φ ∈ Aut∗W such that ϕ1 = ψ, where ϕ is the unique
element of Aut∗ A satisfying Φ(E) = ϕEϕ−1 for all E ∈ W . Computing, we have

χΦ(D) = χ(Φ(D)) = χ(ϕDϕ−1) = χ0(ϕ1Dϕ−1
1 ) = χ0(ψDψ−1)

= tr tC(tGBtG−1) = tr(tG−1tCtG)B = tr t(GCG−1)B.

Since t(GCG−1) is upper triangular, it follows that χΦ(D) = 0 if B is strictly upper
triangular, in particular if D = xiDj with 1 ≤ i < j ≤ n. Finally, since Φ ∈ Aut∗W , we
have χΦ(W−1) = χ(W−1) = 0. ¤

The second part of the proof of 1.2(3) shows essentially that for ψ ∈ gln(F )∗, there
exists Φ ∈ Aut(gln(F )) such that ψΦ vanishes on the upper triangular matrices. This was
already observed in [FP, Section 1.4]. We remark also that a complete set of representatives
for the character conjugacy classes in the case W = W (1,1) was determined by Feldvoss
and Nakano in [FN, 3.1].

2. Simple Induced Modules

In this section, it is shown that, with a few exceptions, the simple W -modules with
character height at most one can be realized as certain induced modules Zχ(S).

Let χ ∈ W ∗. Generalizing the construction of the restricted enveloping algebra u(W )
of W , one defines the χ-reduced universal enveloping algebra of W , denoted u(W,χ), by
forming the quotient of the universal enveloping algebra U(W ) of W by the ideal generated
by {Dp−D[p]−χ(D)p1F |D ∈ W}. (Note that u(W, 0) = u(W ).) Just like with u(W ), the
vector space u(W,χ) possesses a PBW-type basis. The u(W,χ)-modules are precisely the
W -modules having character χ. Let V be a restricted subalgebra of W . Then χ restricts
to an element of V ∗ which we continue to denote by χ. The algebra u(V, χ) identifies with
a subalgebra of u(W,χ) in the natural way. (See [SF, Section 5.3] for more details.)
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There are standard restricted subalgebras of W that will be referred to throughout the
paper. They are

N−
0 =

∑

i>j

FxiDj , H =
∑

i

FxiDi, N0 =
∑

i<j

FxiDj ,

N− = N−
0 + W−1, N = N0 + W 1, B = H + N.

Note that we obtain a triangular decomposition W = N−+̇H+̇N .
Let M be a B-module. Let λ ∈ Fn and set Mλ = {m ∈ M |xiDi ·m = λim for all 1 ≤

i ≤ n}. An element of Mλ is a weight vector (of weight λ). A nonzero m ∈ Mλ is a maximal
vector (of weight λ) provided N ·m = 0.

Now suppose M has character χ and let 0 6= m ∈ Mλ. Then λp
i m−λim = (xiDi)p ·m−

xiDi ·m = χ(xiDi)pm implying λ ∈ Λχ := {λ ∈ Fn |λp
i −λi = χ(xiDi)p for all 1 ≤ i ≤ n}.

In particular, if M has a maximal vector of weight λ, then necessarily λ ∈ Λχ. Note that
if χ(H) = 0, then Λχ = Fn

p =: Λ, where Fp is the prime subfield of F .

2.1 Lemma. Let χ ∈ W ∗ with χ(N) = 0 and let M be a u(W,χ)-module. The following
conditions are equivalent:

(1) M is nonzero and is generated by each of its maximal vectors,
(2) M is simple.

Proof. Assume (1) holds and let M ′ be a nonzero submodule of M . Choose a simple
B-submodule S of M ′. Now N0 is a p-nilpotent ideal of H + N0 and the grading on W

is restricted, so N is a p-nilpotent ideal of B. Since S has character χ and χ(N) = 0, it
follows that for each D ∈ N , we have Dpl · S = D[p]l · S = 0 for some l ∈ N. Therefore,
N ·S = 0 [SF, Corollary 3.8, p. 19]. This implies that S is simple as H-module. Since H is
abelian, S must be one-dimensional [SF, Lemma 5.6, p. 31], so S = Fm for some nonzero
m ∈ S. Clearly m is a maximal vector. By assumption, m generates M , so that M ′ = M .
Thus (2) holds.

Since a maximal vector is nonzero by definition, the other implication is obvious. ¤

Since W 1 / W 0, any W0-module becomes a W 0-module via the canonical map W 0 →
W 0/W 1 ∼= W0. In particular, a W0-module can be viewed as a B-module; the notion of
maximal vector applied to this situation is the classical one (recalling that W0

∼= gln(F )).
For λ ∈ Λ, let L0(λ) be a restricted simple W0-module having maximal vector of weight λ.

For any u(W 0, χ)-module M , the induced u(W,χ)-module Zχ(M) is defined by

Zχ(M) = u(W,χ)⊗u(W 0,χ) M.

By the PBW theorem, any v ∈ Zχ(M) can be expressed uniquely in the form v =∑
a∈A Da ⊗ma with ma ∈ M , where Da :=

∏
i Dai

i .
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If ht χ ≤ 1 and M is a u(W0, χ)-module, then, since χ(W 1) = 0, M has character
χ when viewed as a W 0-module as above, so that Zχ(M) is defined. If htχ ≤ 0, then
Zχ(L0(λ)) (λ ∈ Λ) is defined and we denote this module simply by Zχ(λ).

2.2 Proposition. Let χ ∈ W ∗ with htχ ≤ 1 and let M be a simple u(W,χ)-module. Then
M is a homomorphic image of Zχ(S) for some simple u(W0, χ)-module S.

Proof. M has a simple u(W 0, χ)-submodule S. Now W 1 / W 0, so arguing just as in the
proof of 2.1(1), we deduce that W 1 acts trivially on S. This implies that S is a (simple)
u(W0, χ)-module (see the discussion after 2.1). The inclusion map S → M is a u(W 0, χ)-
homomorphism, so it induces a u(W,χ)-homomorphism Zχ(S) → M , which is surjective
since M is simple. ¤

Before presenting the main result of the section, we need a technical lemma. The first
part follows from [SF, Proposition 1.3(4), p. 9], and the second part is an easy consequence
of the bracket product in W .

2.3 Lemma. The following formulas hold in the algebra u(W,χ):

(1) (x(bεi)Dj)Da
i =

∑b
k=0(−1)k

(
a
k

)
Da−k

i (x((b−k)εi)Dj) (a, b ∈ Z+, 1 ≤ i, j ≤ n),
(2) (x(εi+εl)Dj)Dk = Dk(x(εi+εl)Dj)− x(εi+εl−εk)Dj (1 ≤ i, j, k, l ≤ n). ¤

For 0 ≤ k ≤ n, set ωk = −∑n
i=k+1 εi ∈ Λ. The weights ω0, ω1, . . . , ωn are called

exceptional weights.
Recall that N−

0 =
∑

i>j FxiDj .

2.4 Theorem. Let χ ∈ W ∗ with htχ ≤ 1, let M be a u(W0, χ)-module, and let v be a
maximal vector in Zχ(M) of weight λ.

(1) If χ(N−
0 ) 6= 0, then v = 1⊗m for some maximal vector m ∈ M .

(2) If M has no maximal vector of weight ω0, then either v = 1⊗m for some maximal
vector m ∈ M , or M has a maximal vector of weight ωk for some 1 ≤ k ≤ n and
we have λ = ωk−1.

Proof. Write v =
∑

a∈A Da⊗ma with ma ∈ M . For each 1 ≤ i ≤ n, we have, using 2.3(1),
∑

a

Da ⊗ λima = λiv = xiDi · v =
∑

a

Da ⊗ (xiDi ·ma − aima).

Therefore, xiDi ·ma = λ(a)ima for each i and a, where λ(a)i := λi + ai.

Step 1: If ma 6= 0, then ai ∈ {0, 1, p− 1} for each i, and λ(a)i = (ai − 1)/2 if ai 6= 0.

First, since N · v = 0 and W 1 ·M = 0, we get, using 2.3(1),

0 = x(2εi)Di · v =
∑

a

[(
ai

2

)
− aiλ(a)i

]
Da−εi ⊗ma.
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This implies that, if ma 6= 0, then either ai = 0 or λ(a)i = (ai − 1)/2. Similarly,

0 = x(3εi)Di · v =
∑

a

[
−

(
ai

3

)
+

(
ai

2

)
λ(a)i

]
Da−2εi ⊗ma,

from which it follows that, if ma 6= 0, then either ai ∈ {0, 1} or λ(a)i = (ai − 2)/3.
Now assume ma 6= 0 and ai /∈ {0, 1} for some i. By the preceding remarks, we have
(ai − 1)/2 = λ(a)i = (ai − 2)/3 (in F ), whence ai = p− 1. This finishes step 1.

Step 2: Assume that either χ(N−
0 ) 6= 0 or M has no maximal vector of weight ω0. If

ma 6= 0, then a ∈ {0} ∪ {εk | 1 ≤ k ≤ n}.

Fix i 6= j. 2.3(1) yields

(1) 0 = x(2εi)Dj · v = −
∑

a

aiD
a−εi ⊗ xiDj ·ma +

∑
a

(
ai

2

)
Da−2εi+εj ⊗ma.

Let a ∈ A and assume ai = p − 1 and aj 6= p − 1. Then
(
ai

2

)
Da−2εi+εj 6= 0. We contend

that the term
(
ai

2

)
Da−2εi+εj ⊗ma in the above expression does not cancel with any other

terms (thus forcing ma = 0). First, if Da−2εi+εj = Db−2εi+εj for some b ∈ A, then clearly
b = a. Next, assume Da−2εi+εj = Db−εi for some b ∈ A. Then a− 2εi + εj = b− εi (since
aj 6= p− 1), implying ai− 2 = bi− 1, or, in other words, bi = ai− 1 = p− 2. But then step
1 says mb = 0 (since p > 3). We conclude that no cancellation occurs and hence ma = 0.
We have shown that if ma 6= 0 and ai = p − 1 for some i, then aj = p − 1 for all j. Set
τ = (p − 1, . . . , p − 1). We claim that mτ = 0. Suppose instead that mτ 6= 0. For i < j,
2.3(1) gives

(2) 0 = xiDj · v =
∑

a

Da ⊗ xiDj ·ma −
∑

a

aiD
a−εi+εj ⊗ma.

Arguing as above, we conclude that xiDj ·mτ = 0 so that mτ is a maximal vector. By
step 1, mτ has weight ω0. Checking the assumptions of step 2, we see that it must be the
case that χ(N−

0 ) 6= 0, so that χ(xiDj) 6= 0 for some i > j. Since (xiDj)p · x = χ(xiDj)px

(x ∈ M), it follows that xiDj ·x 6= 0 for each nonzero x ∈ M . In particular, xiDj ·mτ 6= 0.
Therefore, the term Dτ−εi ⊗xiDj ·mτ in equation (1) is nonzero, and it is easily seen that
it does not cancel with any other terms. This is a contradiction. Therefore, the claim that
mτ = 0 is established.

So far, we have shown that if ma 6= 0, then ai ∈ {0, 1} for each i. Let a ∈ A and
assume ai = 1 = aj for some i < j. Then aiD

a−εi+εj 6= 0 and the term aiD
a−εi+εj ⊗ma

in equation (2) does not cancel with any other terms (for if Da−εi+εj = Db for some
b ∈ A, then a − εi + εj = b, implying bj = aj + 1 = 2, whence mb = 0). Thus ma = 0.
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Summarizing, if ma 6= 0, then ai ∈ {0, 1} for each i, and ai = 1 for at most one i. This
completes step 2.

Step 3: Completion of proof.

(1) Assume χ(N−
0 ) 6= 0 so that χ(xiDj) 6= 0 for some i > j. By step 2, we have

v = 1 ⊗ m0 +
∑

k Dk ⊗ mεk
. Equation (1) gives 1 ⊗ xiDj · mεi = 0, which implies

mεi = 0 (using the argument in the proof of step 2). Then using 2.3(2), we get, for each
k, −1⊗ xiDj ·mεk

= x(εi+εk)Dj · v = 0, implying mεk
= 0. Hence, v = 1⊗m0 and, since

v is a maximal vector, so is m0.
(2) Assume M has no maximal vector of weight ω0. Again, step 2 applies to give

v = 1 ⊗m0 +
∑

k Dk ⊗mεk
. If mεk

= 0 for all 1 ≤ k ≤ n, then v = 1 ⊗m0 and m0 is a
maximal vector. So assume mεl

6= 0 for some 1 ≤ l ≤ n. Assume further that l is the least
such integer. We shall show that

(3) λ(εl)i =
{

0, i ≤ l,

−1, i > l.

If i ≤ l, then 0 = x(εi+εl)Di · v = −λ(εl)i1 ⊗mεl
by 2.3(2), so λ(εl)i = 0. Next, we note

that, for j < i, 2.3(1) gives

(4) 0 = xjDi · v = 1⊗ xjDi ·m0 +
∑

k≥l

Dk ⊗ xjDi ·mεk
−

{
0, j < l,

Di ⊗mεj , j ≥ l.

Let i > l. Setting j = l in equation (4) we find that xlDi · mεi = mεl
. In particular,

mεi 6= 0, so step 1 says λ(εi)i = 0, that is, xiDi · mεi = 0. Therefore, xiDi · mεl
=

xiDi · (xlDi ·mεi) = −xlDi ·mεi = −mεl
, implying λ(εl)i = −1. This establishes equation

(3). Equation (4) also shows that xjDi ·mεl
= 0 whenever j < i, implying mεl

is a maximal
vector. By equation (3) its weight is ωl. Finally, Dl ⊗mεl

has weight ωl−1, which implies
that the weight λ of v is ωl−1 as well. ¤

Let g be a restricted Lie algebra. Let Φ ∈ Aut(g) and let M be a g-module. Denote
by MΦ the g-module having M as its underlying vector space and g-action given by
x ·m = Φ(x)m (x ∈ g, m ∈ M), where the action on the right is the given one. Clearly,
MΦ is simple if and only if M is. Also, it is easy to check that if M has character χ, then
MΦ has character χΦ.

From the description before 1.1 of Aut W , we see that any Φ ∈ AutW restricts to an
automorphism of W 0 (resp., W 1), which we continue to denote by Φ. The next proposition
will allow us to reduce certain arguments to the situation of 2.1.

2.5 Proposition. Let χ ∈ W ∗ and let Φ ∈ AutW .

(1) If M is a u(W 0, χ)-module, then [Zχ(M)]Φ ∼= ZχΦ
(MΦ).

(2) If ht χ ≤ 0, then [Zχ(ωk)]Φ ∼= ZχΦ
(ωk) (0 ≤ k ≤ n).
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Proof. (1) Let M be a u(W 0, χ)-module. As noted above, [Zχ(M)]Φ is a u(W,χΦ)-module.
Its subspace 1⊗M is a u(W 0, χΦ)-submodule isomorphic to MΦ. Moreover, a u(W 0, χΦ)-
isomorphism MΦ → 1⊗M induces a u(W,χΦ)-homomorphism ϕ : ZχΦ

(MΦ) → [Zχ(M)]Φ,
which is necessarily surjective since 1⊗M generates [Zχ(M)]Φ. Finally, both modules have
dimension pn dimF M , so ϕ is an isomorphism.

(2) First, we describe the usual concrete realization of the W0-module L0(ωk). Recall the
isomorphism W0

∼= gln(F ) =: g. Let V be the natural module for g. It is well known that
Vk :=

∧k
i=1 V is a simple restricted g-module with maximal vector of weight (1, . . . , 1

k
, 0,

. . . , 0). (V consists of n-dimensional column vectors. If vi is the column vector with 1 in the
ith position and 0’s elsewhere, then v1∧· · ·∧vk is clearly a maximal vector of the indicated
weight in Vk.) Let T denote the one-dimensional trace module for g (T = Fv with xv =
(tr x)v for x ∈ g). Then L0(ωk) ∼= T p−1⊗F Vk, where T p−1 = T ⊗F · · ·⊗F T (p−1 factors).
Indeed, T p−1 ⊗F Vk is clearly simple (since Vk is) and it contains vp−1 ⊗ (v1 ∧ · · · ∧ vk), a
maximal vector of weight (p− 1, . . . , p− 1) + (1, . . . , 1

k
, 0, . . . , 0) = (0, . . . , 0

k
,−1, . . . ,−1) =

ωk.
Assume ht χ ≤ 0. By (1), it suffices to show that L0(ωk)Φ and L0(ωk) are isomorphic

as modules for u(W 0, χ) = u(W 0). Because W 1 acts trivially on L0(ωk), we may assume
Φ ∈ Aut∗W . Let ϕ ∈ Aut∗ A be as in the proof of 1.1, so that Φ(D) = ϕDϕ−1 for all
D ∈ W . We view ϕ1 as an element of GL(V ) by identifying the vector space V with
A1 via vi 7→ xi. Then, with the usual diagonal action of GL(V ) on Vk, we have that
vp−1 ⊗ ϕ1 · (v1 ∧ · · · ∧ vk) is a maximal vector in (T p−1 ⊗F Vk)Φ ∼= L0(ωk)Φ of weight ωk.
Since L0(ωk)Φ is simple, we have L0(ωk)Φ ∼= L0(ωk) as desired. ¤

2.6 Corollary. Let χ ∈ W ∗ with htχ ≤ 1, and let S be a simple u(W0, χ)-module. If S

is not W0-isomorphic to any L0(ωk) (0 ≤ k ≤ n), then Zχ(S) is simple. In particular, if
htχ = 1, then Zχ(S) is simple.

Proof. If htχ = 1, then χ(W0) 6= 0, implying S is not restricted and hence not W0-
isomorphic to any L0(ωk) (0 ≤ k ≤ n). Therefore, it suffices to prove the first statement.

In view of 2.5 (and its proof), we may replace χ with any convenient conjugate χΦ,
Φ ∈ AutW . Then by 1.2 we may assume χ(N) = 0.

Assume S is not W0-isomorphic to any L0(ωk) (0 ≤ k ≤ n). Let v ∈ Zχ(S) be a
maximal vector of weight, say, λ. By 2.1, it is enough to show that v generates Zχ(S).

First assume χ(N−
0 ) 6= 0. By 2.4(1), v = 1⊗m with 0 6= m ∈ S. Since m generates S,

it follows that v generates Zχ(S).
For the remainder of the proof, assume χ(N−

0 ) = 0. Suppose htχ ≤ 0. Then S is
restricted and hence, by assumption, does not contain a maximal vector of exceptional
weight ωk for any k. Therefore, 2.4(2) says v is of the form 1⊗m with 0 6= m ∈ S, and v

generates Zχ(S) as before.
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Finally suppose ht χ = 1. Then χ(xiDi) 6= 0 for some i. As pointed out before 2.1,
λ ∈ Λχ, so λi is a solution of λp

i − λi = χ(xiDi)p. In particular, λi /∈ {0, 1}. This shows
that λ is not exceptional. Once again, 2.4(2) says v is of the form 1⊗m with 0 6= m ∈ S

and the proof is complete. ¤

3. Exceptional Simple Modules

Here, we study the structure of those induced modules that were not included in 2.6,
namely, the modules Zχ(ωk) with 0 ≤ k ≤ n, ht χ ≤ 0. When htχ = −1 (the restricted
case), these modules are isomorphic to the terms in the usual de Rham complex for W and
the properties of the complex have been used to determine the structure of the induced
modules (see [Sh], [N]). In order to handle the case htχ = 0, we define a more general de
Rham complex–one depending on χ.

For this entire section, we fix χ ∈ W ∗ and assume htχ ≤ 0. Set

Aχ = Homu(W 0)(u(W,χ), F ),

where F is the trivial W 0-module. For any n-tuple a of nonnegative integers, put Da =∏
i Dai

i . Since u(W,χ) is a free left u(W 0)-module with base {Da | a ∈ A} (by the PBW
theorem), we get an F -basis {y(a) | a ∈ A} of Aχ by defining y(a)(vDb) = ε(v)δab, where
v ∈ u(W 0) and ε : u(W 0) → F is the augmentation homomorphism, which satisfies
ε(D) = 0 for all D ∈ W 0.

For any b ∈ Zn, there exist unique b0 ∈ A, b1 ∈ (pZ)n such that b = b0 + b1. We extend
the notation of the previous paragraph by defining for b ∈ Zn

y(b) =
{

χ(D)−b1y(b0), b ≤ τ,

0, otherwise,

where χ(D)c :=
∏

i χ(Di)ci for c ∈ Zn, c ≥ 0 (with the convention 00 = 1), and where
τ = (p− 1, . . . , p− 1) as before. From the definition of u(W,χ), we have Dc = χ(D)c1

Dc0

(c ∈ Zn, c ≥ 0), and therefore,

y(b)(vDc) = ε(v)χ(D)c1−b1δb0,c0

(v ∈ u(W 0), b, c ∈ Zn, b ≤ τ , c ≥ 0).
We extend the definition of the binomial coefficient

(
l
k

)
to arbitrary l, k ∈ Z in the usual

way:
(

l

k

)
=





l(l−1)···(l−k+1)
k(k−1)···1 , k > 0,

1, k = 0,

0, k < 0
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(and put
(
a
b

)
=

∏
i

(
ai

bi

)
for a, b ∈ Zn). The standard identity

(
l + 1

k

)
=

(
l

k

)
+

(
l

k − 1

)

is easily seen to be valid for all l, k ∈ Z. Using the easily checked identity
(

l
k

)
=

(−1)k
(−l+k−1

k

)
for the case l < 0, we see that

(
l
k

)
is always an integer. The proof of

the following lemma is straightforward.

3.1 Lemma. Let k, l, m ∈ Z.

(1) If 0 ≤ k < p, l < p, and k + l ≥ p, then
(
k+l
k

) ≡ 0 (mod p).
(2) If 0 ≤ k < p and l ≡ m (mod p), then

(
l
k

) ≡ (
m
k

)
(mod p). ¤

Let ∆ : U(W ) → U(W ) ⊗F U(W ) be the usual comultiplication, which is induced
by D 7→ D ⊗ 1 + 1 ⊗ D (D ∈ W ). The composition U(W ) ∆→ U(W ) ⊗F U(W ) can.→
u(W ) ⊗F u(W,χ) sends Dp − D[p] − χ(D)p (D ∈ W ) to zero and hence induces a map
∆′ : u(W,χ) → u(W )⊗F u(W,χ) which makes u(W,χ) into a left u(W )-comodule.

For x ∈ A0, y ∈ Aχ, define xy : u(W,χ) → F by (xy)(u) = x⊗y(∆′(u)). (Here,
x⊗y(u1 ⊗ u2) := x(u1)y(u2).) One easily checks using [SF, p. 125, last paragraph], that
xy ∈ Aχ. In the case χ = 0, this gives an associative product on A0, the associativity
coming from the coassociativity of ∆, and thus A0 becomes an associative algebra. In
turn, for general χ the above product makes Aχ into a left A0-module. Similarly, Aχ

becomes a right A0-module.
If χ = 0, then y(b) = 0 for b /∈ A. (Indeed, if b � τ , then y(b) = 0 by definition, and if

b ≤ τ and b � 0, then b1 6= 0, so y(b) = 0(D)−b1y(b0) = 0.) Therefore, since x(b) = 0 for
b /∈ A as well, we obtain a well-defined vector space isomorphism A0 → A via y(b) 7→ x(b)

(b ∈ Zn). We use this isomorphism to identify these two spaces. It follows from the next
result that this is actually an algebra isomorphism. (We retain the notation y(b) for the
aforementioned basis vector of Aχ with χ our arbitrary fixed character.)

3.2 Lemma. If a, b ∈ Zn and a ≤ τ , then x(a)y(b) =
(
a+b

a

)
y(a+b).

Proof. Let a, b ∈ Zn and assume a ≤ τ . We first note that if a, b ∈ A, then the formula can
be derived just as in the proof of [SF, Lemma 5.7(2), p. 131]. We will use this observation
to establish the general case below.

If a � 0, then x(a) = 0, and also
(
a+b

a

)
= 0 by the definition of the binomial coefficient, so

both sides of the equation equal zero if a /∈ A. Therefore, we may assume a ∈ A. If b � τ ,
then a + b � τ , and so y(b) = 0 = y(a+b), giving the lemma. Hence, we may assume b ≤ τ .
From the previous paragraph, we get x(a)y(b) = χ(D)−b1x(a)y(b0) = χ(D)−b1

(
a+b0

a

)
y(a+b0).

If a + b0 /∈ A, then
(
a+b

a

)
=

(
a+b0

a

)
= 0 (in F ), using 3.1(2) then 3.1(1), so the lemma
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holds. On the other hand, if a+ b0 ∈ A, then (a+ b)0 = a+ b0 and (a+ b)1 = b1, implying
x(a)y(b) =

(
a+b0

a

)
χ(D)−(a+b)1y((a+b)0) =

(
a+b

a

)
y(a+b). ¤

For reference, we state a generalization of the standard binomial coefficient identity
stated before 3.1; the proof is straightforward.

3.3 Lemma.
(
a+εi

b

)
=

(
a
b

)
+

(
a

b−εi

)
(a, b ∈ Zn, 1 ≤ i ≤ n). ¤

Aχ is a coinduced u(W,χ)-module; the W -action is given by (D·y)(u) = y(uD) (D ∈ W ,
y ∈ Aχ, u ∈ u(W,χ)). (The next result shows that when χ = 0 this action coincides with
the usual action of W on the divided power algebra A.)

3.4 Proposition. If 1 ≤ i ≤ n, a ∈ A, and b ∈ Zn with b ≤ τ , then x(a)Di · y(b) =(
a+b−εi

a

)
y(a+b−εi).

Proof. Assume the hypotheses. One checks by induction on c ∈ A that in the algebra
u(W,χ) we have the formula

Dc(x(a)Di) =
∑

0≤e≤a∧c

(
c

e

)
(x(a−e)Di)Dc−e,

where (a ∧ c) ∈ A satisfies (a ∧ c)j = min{aj , cj}. Then, for v ∈ u(W 0), c ∈ A, we have

(x(a)Di · y(b))(vDc) = y(b)(vDc(x(a)Di)) = χ(D)−b1
∑

0≤e≤a∧c

(
c

e

)
y(b0)(v(x(a−e)Di)Dc−e)

=
(

c

a

)
χ(D)(c−a+εi)

1−b1ε(v)δb0,(c−a+εi)0

=
(

a + b− εi

a

)
χ(D)c1−(a+b−εi)

1
ε(v)δ(a+b−εi)0,c0

=
(

a + b− εi

a

)
y(a+b−εi)(vDc),

where, for the third equality we have used that x(a−e)Di ∈ W 0 unless e = a, and for the
fourth equality we have used that r0 = s0 implies r1 − s1 = r − s (r, s ∈ Zn), as well as
3.1(2). The lemma follows. ¤

3.5 Corollary. Let x ∈ A, y ∈ Aχ, D ∈ W .

(1) (xD) · y = x(D · y),
(2) D · (xy) = (Dx)y + x(D · y).

Proof. We may assume x = x(a), y = y(b), D = x(c)Dj , with a, b, c ∈ A, 1 ≤ j ≤ n.
(1) We have

(xD) · y =
(

a + c

a

)
x(a+c)Dj · y(b) =

(
a + c

a

)(
a + c + b− εj

a + c

)
y(a+c+b−εj),
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using 3.4 if a + c ≤ τ , and the fact that
(
a+c

a

)
1F = 0 if a + c � τ (3.1(1)). On the other

hand,

x(D · y) =
(

c + b− εj

c

)
x(a)y(c+b−εj) =

(
c + b− εj

c

)(
a + c + b− εj

a

)
y(a+c+b−εj),

using 3.4, then 3.2. The desired equality now follows easily from the definition of the
binomial coefficient.

(2) Using (1), we reduce to the case D = Dj , with 1 ≤ j ≤ n. Then

D · (xy) =
(

a + b

a

)
Dj · y(a+b) =

(
a + b

a

)
y(a+b−εj),

while

(Dx)y + x(D · y) = x(a−εj)y(b) + x(a)y(b−εj) =
[(

a− εj + b

a− εj

)
+

(
a + b− εj

a

)]
y(a+b−εj).

The desired equality now follows from 3.3. ¤

We continue to view W and A as left A-modules in the natural way and set Ω1 =
HomA(W,A). Then Ω1 is a free A-module with base {dx1, . . . , dxn}, where d : A → Ω1 is
given by dx : D 7→ Dx (x ∈ A, D ∈ W ). Ω1 becomes a (restricted) W -module by defining
D · ϕ = D ◦ ϕ− ϕ ◦ (ad D) (D ∈ W , ϕ ∈ Ω1) (cf. [BW, p. 125]). The following formula is
routine to verify.

3.6 Lemma. x(a)Di · dxj = δij

∑n
k=1 x(a−εk)dxk (a ∈ A, 1 ≤ i, j ≤ n). ¤

The exterior algebra Ω of Ω1 over A is a W -module with W -action extended from
the actions on Ω1 and A subject to the rules D · (v ∧ w) = (D · v) ∧ w + v ∧ (D · w),
D · (xv) = (Dx)v + x(D · v) (D ∈ W , x ∈ A, and v, w ∈ Ω). We have Ω =

∑̇n

k=0Ωk,
where Ωk is the k-fold exterior power of Ω1 over A. Ωk is a W -submodule of Ω; it has
F -basis {x(a)dxγ | a ∈ A, γ ∈ Γk}, where Γk := {γ ∈ Zk | 1 ≤ γ1 < γ2 < · · · < γk ≤ n} and
dxγ := dxγ1 ∧ · · · ∧ dxγk

.
Set Ωχ

k = Aχ ⊗A Ωk. By the right-hand analog of 3.2, Aχ is a free right A-module with
base {y(0)}. (In fact, 3.2 shows that Aχ is isomorphic to A as left (resp., right) A-module.)
Therefore, Ωχ

k is a free left A-module with base {y(0) ⊗ dxγ | γ ∈ Γk} and hence it has
F -basis {y(a) ⊗ dxγ | a ∈ A, γ ∈ Γk}.

The tensor product Aχ ⊗F Ωk becomes a W -module in the usual way: D · (y ⊗ v) =
(D · y)⊗ v + y ⊗ (D · v) (D ∈ W , y ∈ Aχ, v ∈ Ωk). By using 3.5(2), one checks that this
action induces a well-defined W -module structure on Aχ ⊗A Ωk = Ωχ

k . Clearly, Ωχ
k has

character χ. Putting the above action together with 3.6 gives the formula in the following
proposition.
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3.7 Proposition. If 1 ≤ i, k ≤ n, γ ∈ Γk, a ∈ A, and b ∈ Zn with b ≤ τ , then

x(a)Di · (y(b) ⊗ dxγ) =
(

a + b− εi

a

)
y(a+b−εi) ⊗ dxγ

+ δi∈γ

∑

j /∈γ\i
(−1)|iγj |

(
a− εj + b

a− εj

)
y(a−εj+b) ⊗ dx(γ\i)∪j . ¤

In this proposition and below, if P is a statement, then we define δP to be 1 if P is true
and 0 otherwise. Also, we abuse notation slightly by viewing the k-tuple γ as a set. Then

iγj = {l ∈ γ | l is between i and j} and (γ\i)∪j is the k-tuple obtained by replacing i with
j and reordering; it is the reordering that accounts for the sign (−1)|iγj | in the proposition.

Recall that Zχ(λ) := u(W,χ) ⊗u(W 0) L0(λ), where L0(λ) is a simple restricted W0-
module having maximal vector of weight λ.

3.8 Proposition. Ωχ
k
∼= Zχ(ωk) (0 ≤ k ≤ n).

Proof. Let the notation be as in the proof of 2.5(2). It is not hard to check that M :=
〈y(τ) ⊗ dxγ | γ ∈ Γk〉 ≤ Ωχ

k (where τ = (p− 1, . . . , p− 1)) is W 0-isomorphic to T p−1 ⊗F Vk

(viewed as a W 0-module via W 0 ³ W 0/W 1 ∼= W0
∼= g). An isomorphism is given by

y(τ) ⊗ dxγ 7→ vp−1 ⊗ vγ . Therefore, M ∼= L0(ωk).
Since, as noted above, Ωχ

k is a u(W,χ)-module, an isomorphism L0(ωk) → M induces
a u(W,χ)-homomorphism ϕ : Zχ(ωk) → Ωχ

k , the image of which contains M . Now y(a) ⊗
dxγ = Dτ−a · (y(τ) ⊗ dxγ) ∈ imϕ (a ∈ A, γ ∈ Γk), so ϕ is surjective. Since both modules
have dimension pn

(
n
k

)
, ϕ is an isomorphism. ¤

Define a linear map δχ
k : Ωχ

k → Ωχ
k+1 by

δχ
k (y(b) ⊗ dxγ) =

n∑

i=1

(Di · y(b))⊗ dxγ ∧ dxi =
∑

i/∈γ

(−1)|γ>i|y(b−εi) ⊗ dxγ∪i

(b ∈ A, γ ∈ Γk), where γ>i = {j ∈ γ | j > i}. One easily checks that the same formula is
valid for any b ∈ Zn with b ≤ τ .

3.9 Theorem. δχ
k is a W -homomorphism.

Proof. Let a, b ∈ A, 1 ≤ i ≤ n, γ ∈ Γk. It is enough to show that δχ
k (x(a)Di ·(y(b)⊗dxγ)) =

x(a)Di · δχ
k (y(b) ⊗ dxγ). Using the definitions and 3.4, we get

δχ
k (x(a)Di · (y(b) ⊗ dxγ)) = S1 + S,

where

S1 =
(

a + b− εi

a

) ∑

l/∈γ

(−1)|γ>l|y(a+b−εi−εl) ⊗ dxγ∪l,

S = δi∈γ

∑

j /∈γ\i
(−1)|iγj |

(
a− εj + b

a− εj

) ∑

l/∈(γ\i)∪j

(−1)|(γ\i)∪j>l|y(a−εj+b−εl) ⊗ dx(γ\i)∪j∪l.



SIMPLE MODULES FOR WITT ALGEBRAS 15

(In computing S1, we have used the formula for δχ
k to compute δχ

k (y(a+b−εi) ⊗ dxγ). Ac-
tually, the formula might not apply if a + b− εi � τ . However, in this case, y(a+b−εi) = 0
and

(
a+b−εi

a

)
= 0 (3.1(1)), so the expression for S1 still holds. A similar statement applies

to the sum S.) Separating out the terms in S with j = i and l = i gives S = S2 + S3 + S4,
where

S2 = δi∈γ

∑

l/∈γ

(−1)|γ>l|
(

a− εi + b

a− εi

)
y(a−εi+b−εl) ⊗ dxγ∪l,

S3 = δi∈γ

∑

j /∈γ

(−1)|iγj |
(

a− εj + b

a− εj

)
(−1)|γ∪j>i|y(a−εj+b−εi) ⊗ dxγ∪j ,

S4 = δi∈γ

∑

j /∈γ

(−1)|iγj |
(

a− εj + b

a− εj

) ∑

l/∈γ∪j

(−1)|(γ\i)∪j>l|y(a−εj+b−εl) ⊗ dx(γ\i)∪j∪l.

Similarly, we get
x(a)Di · δχ

k (y(b) ⊗ dxγ) = T1 + T,

where

T1 =
∑

l/∈γ

(−1)|γ>l|
(

a + b− εl − εi

a

)
y(a+b−εl−εi) ⊗ dxγ∪l,

T =
∑

l/∈γ

(−1)|γ>l|δi∈γ∪l

∑

j /∈(γ∪l)\i
(−1)|i(γ∪l)j |

(
a− εj + b− εl

a− εj

)
y(a−εj+b−εl) ⊗ dx((γ∪l)\i)∪j .

Separating out the terms in T with l = i and j = i gives T = T2 + T3 + T4, where

T2 = δi/∈γ

∑

j /∈γ

(−1)|γ>i|(−1)|iγj |
(

a− εj + b− εi

a− εj

)
y(a−εj+b−εi) ⊗ dxγ∪j ,

T3 = δi∈γ

∑

l/∈γ

(−1)|γ>l|
(

a− εi + b− εl

a− εi

)
y(a−εi+b−εl) ⊗ dxγ∪l,

T4 = δi∈γ

∑

j,l/∈γ
j 6=l

(−1)|γ>l|(−1)|i(γ∪l)j |
(

a− εj + b− εl

a− εj

)
y(a−εj+b−εl) ⊗ dx(γ\i)∪j∪l.

Therefore, it remains to verify that S1 + S2 + S3 + S4 = T1 + T2 + T3 + T4.
If i /∈ γ, then S2 = S3 = S4 = T3 = T4 = 0 and T1 + T2 = S1 (using 3.3), so this case is

checked. Now assume i ∈ γ. One easily checks (using 3.3 again), that

S1 + S2 =
∑

l/∈γ

(−1)|γ>l|
(

a + b

a

)
y(a+b−εi−εl) ⊗ dxγ∪l = T1 + T3 − S3.
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Next,

S4 − T4 =
∑

j,l/∈γ
j 6=l

(−1)δl<j (−1)|γ>i|(−1)|j(γ\i)l|
(

a + b− εj − εl

a− εj − εl

)
y(a+b−εj−εl) ⊗ dx(γ\i)∪j∪l,

which is zero because the summand with j < l cancels with the summand with l < j.
Finally, T2 = 0 since i ∈ γ. ¤

Set Ω
χ

k = Ωχ
k/ ker δχ

k .

3.10 Proposition. Assume htχ = 0 and let 0 ≤ k ≤ n.

(1) The sequence 0 → Ωχ
0

δχ
0→ Ωχ

1

δχ
1→ · · · δχ

n−1→ Ωχ
n → 0 is exact.

(2) Ω
χ

k has basis {y(a) ⊗ dxγ | a ∈ A, γ ∈ Γk, j /∈ γ} for any 1 ≤ j ≤ n satisfying
χ(Dj) 6= 0.

(3) dimF Ω
χ

k = pn
(
n−1

k

)
.

Proof. First, for any a ∈ A, γ ∈ Γk, we have

δχ
k+1δ

χ
k (y(a) ⊗ dxγ) =

∑

i,j /∈γ
i 6=j

(−1)|γ∪i>j |(−1)|γ>i|y(a−εi−εj)dxγ∪{i,j},

which is zero since (−1)|γ∪i>j |(−1)|γ>i| is (−1)|iγj | for i < j and −(−1)|iγj | for j < i.
Hence im δχ

k ⊆ ker δχ
k+1 and the sequence in (1) is a complex.

Fix 1 ≤ j ≤ n with χ(Dj) 6= 0. Now dimF Ωχ
k = pn

(
n
k

)
and the set in (2) has cardinality

pn
(
n−1

k

)
, so it suffices to prove this set is linearly independent (for then the remaining

claims follow by induction on k).
Suppose

∑
a,γ
j /∈γ

ca,γy(a) ⊗ dxγ = 0 with ca,γ ∈ F . Then

∑
a,γ
j /∈γ

∑

i/∈γ
i 6=j

ca,γ(−1)|γ>i|y(a−εi) ⊗ dxγ∪i +
∑
a,γ
j /∈γ

ca,γ(−1)|γ>j |y(a−εj) ⊗ dxγ∪j = 0.

From our definition of y(b) for b /∈ A, we see that the second sum is a linear combination
of (distinct) standard basis vectors, none of which appears in the first sum. Therefore,
ca,γ = 0 for all (a, γ). ¤

For completeness, we state the corresponding result for the restricted case htχ = −1
(i.e., χ = 0) suppressing the character in the notation (so Ω0

k becomes Ωk, δ0
k becomes δk,

etc.).
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3.11 Proposition.

(1) The sequence 0 → Ω0
δ0→ Ω1

δ1→ · · · δn−1→ Ωn → 0 is a complex and ker δk/ im δk−1 is
a direct sum of

(
n
k

)
copies of the trivial module F (0 ≤ k ≤ n).

(2) Ωk has basis ∪jBj, where Bj = {y(a) ⊗ dxγ | a ∈ A, γ ∈ Γk, j /∈ γ, aj 6= 0,

and for i < j, ai = 0 if i /∈ γ and ai = p− 1 if i ∈ γ}.
(3) dimF Ωk = (pn − 1)

(
n−1

k

)
.

Proof. See [H, 2.2, 2.3] (cf. also [Sh, 2.1]). ¤

The complex of 3.11(1) is called the de Rham complex for W . As the proposition states,
its homology modules are direct sums of the trivial module F . We see from 3.10(1) that
when htχ = 0, the homology modules in the χ-version of the de Rham complex vanish.
This vanishing might have been expected because the trivial module has character 0 and
so cannot appear as a subquotient of a module having nonzero character.

3.12 Theorem. Assume htχ = 0. If 0 < k < n, then Ωχ
k has as unique proper W -

submodule ker δχ
k , while Ωχ

0 and Ωχ
n have no proper W -submodules. In particular, the

W -module Ω
χ

k is simple for 0 ≤ k < n.

Proof. Assume the theorem has been proved for a particular χ ∈ W ∗ and let Φ ∈ AutW .
We prove the theorem for the character ψ := χΦ. It suffices to prove the first statement
(noting that Ω

ψ

0 is nonzero by 3.10(3)). By 3.8 and 2.5(2), we have W -isomorphisms

Ωψ
k
∼= Zψ(ωk) ∼= [Zχ(ωk)]Φ ∼= (Ωχ

k )Φ.

If k is either 0 or n, this shows that Ωψ
k has no proper submodules. Assume 0 < k < n.

By 3.10, ker δψ
k is proper, and so the above isomorphism shows that it is the unique proper

submodule of Ωψ
k .

From the previous paragraph and in light of 1.2(2), we may assume that χ(Di) = δin

(1 ≤ i ≤ n).
We first argue that Ω

χ

k is simple for 0 ≤ k < n, and for this it is enough by 2.1 to
show that this module is generated by each of its maximal vectors (using 3.10 to see that
Ω

χ

k 6= 0). Fix 0 ≤ k < n and let v ∈ Ω
χ

k be a maximal vector. According to 3.10(2) v can
be expressed in the form v =

∑
a,γ
n/∈γ

ca,γy(a) ⊗ dxγ with ca,γ ∈ F . For i < n, we have (3.7)

0 = xiDn · v =
∑
a,γ
n/∈γ

ca,γ(ai + 1)y(a−εn+εi) ⊗ dxγ .

Therefore, ca,γ = 0 if ai 6= p− 1 for some i < n. Next, if 1 ≤ i < j < n, then

0 = xiDj · v =
∑
a,γ

i,n/∈γ
j∈γ

ca,γ(−1)|jγi|y(a) ⊗ dx(γ\j)∪i.
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Therefore, ca,γ = 0 if there exist 1 ≤ i < j < n with j ∈ γ, i /∈ γ. Now

0 = x(2εn)Dn · v =
∑
a,γ
n/∈γ

ca,γ

(
an + 1

2

)
y(a+εn) ⊗ dxγ ,

so ca,γ = 0 if an /∈ {0, p− 1}.
Summarizing, we have

v = cτ,αy(τ) ⊗ dxα + cb,αy(b) ⊗ dxα,

where τ = (p− 1, . . . , p− 1), b = (p− 1, . . . , p− 1, 0), α = (1, 2, . . . , k).
Assume k < n− 1. Then

0 = x(2εn)Dn−1 · v = cb,αy(b−εn−1+2εn) ⊗ dxα,

implying cb,α = 0. Therefore, v = cτ,αy(τ) ⊗ dxα. Since y(τ)⊗dxα generates Ωχ
k , it follows

that v generates Ω
χ

k .
Finally, we consider the case k = n − 1. Since v is a weight vector and y(τ) ⊗ dxα

and y(b) ⊗ dxα are weight vectors having distinct weights, we have that either cτ,α = 0 or
cb,α = 0. If cb,α = 0, then v generates Ω

χ

k (using the argument above), so assume cτ,α = 0.
By 3.10(1), δχ

n−1 induces an isomorphism Ω
χ

n−1 → Ωχ
n, which sends v to cb,αy(τ) ⊗ dxα∪n.

Since this last vector generates Ωχ
n, we conclude that v generates Ω

χ

n−1. In each case, we
have seen that v generates Ω

χ

k . This finishes the proof that Ω
χ

k is simple for 0 ≤ k < n.
We now prove the first statement of the theorem (still assuming χ(Di) = δin). Ωχ

0
∼= Ω

χ

0

and Ωχ
n
∼= Ω

χ

n−1 (3.10(1)), so these modules have no proper submodules. Assume 0 < k <

n. From 3.10(1) we see that Ωχ
k has composition factors Ω

χ

k and ker δχ
k
∼= Ω

χ

k−1. Therefore,
to show that ker δχ

k is the unique proper submodule of Ωχ
k , it suffices to show that Ωχ

k

has no submodule isomorphic to Ω
χ

k . Assume to the contrary that Ω
χ

k
∼= S ≤ Ωχ

k . In
particular, S has a maximal vector of weight ωk (since y(τ) ⊗ dxα is such in Ω

χ

k ). Now
Ωχ

k
∼= Zχ(ωk) (3.8), and 2.4(2) says each maximal vector of weight ωk in Zχ(ωk) is of

the form 1 ⊗ m with 0 6= m ∈ L0(ωk). Since any such vector generates Zχ(ωk), we get
Ω

χ

k
∼= S = Ωχ

k contradicting, for instance, that Ωχ
k has two composition factors. This

finishes the proof. ¤

4. Conclusion

In this final section, we assemble the preceding results and state the main theorems.
Fix χ ∈ W ∗ and assume htχ ≤ 1.
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4.1 Theorem. If S is a simple u(W0, χ)-module, then Zχ(S) has a unique maximal W -
submodule.

Proof. Let S be a simple u(W0, χ)-module. If S is not W0-isomorphic to any L0(ωk)
(0 ≤ k ≤ n), then Zχ(S) is simple (2.6) and the theorem follows. Suppose S ∼= L0(ωk) for
some 0 ≤ k ≤ n. Since L0(ωk) is a restricted W0-module, we have χ(W0) = 0, implying
htχ ≤ 0. If htχ = −1, then χ = 0 (the restricted case) and the claim is well known (see,
for instance, [HN, remarks before 3.2]). If htχ = 0, then Zχ(S) = Zχ(ωk) ∼= Ωχ

k (3.8), and
the theorem follows from 3.12. ¤

For a simple u(W0, χ)-module S, let Lχ(S) denote the quotient of Zχ(S) by its unique
maximal W -submodule (4.1). If htχ ≤ 0, we write Lχ(L0(λ)) more simply as Lχ(λ)
for λ ∈ Λ. For completeness, we begin the description of the simple modules with the
well-known restricted case htχ = −1 (i.e., χ = 0) (again suppressing the character in the
notation as in 3.11). The theorem is due to G. Shen.

4.2 Theorem.

(1) There are pn distinct (up to isomorphism) simple u(W )-modules. They are repre-
sented by {L(λ) |λ ∈ Λ}.

(2) L(λ) ∼= Z(λ) if and only if λ /∈ {ω0, . . . , ωn}. For 0 ≤ k ≤ n, we have L(ωk) ∼= Ωk.
(3) If λ ∈ Λ is not exceptional, then dimF L(λ) = pn dimF L0(λ), while dimF L(ωk) =(

n−1
k

)
(pn − 1) for 0 ≤ k < n, and L(ωn) is the one-dimensional trivial module.

Proof. See [Sh, Theorem 2.1]. Note that 2.6 gives one direction in the first statement of
(2). The proof in [Sh] of the second statement of (2) depends heavily on the grading of
the module Ωk. For a proof that does not use the grading and that is more along the lines
of the proof of 3.12, see [N, Theorem 2.5.3]. ¤

4.3 Theorem. Assume htχ = 0.

(1) There are pn − 1 distinct (up to isomorphism) simple u(W,χ)-modules. They are
represented by {Lχ(λ) |λ ∈ Λ, λ 6= ωn}. We have Lχ(ωn) ∼= Lχ(ωn−1).

(2) Lχ(λ) ∼= Zχ(λ) if and only if λ /∈ {ω1, . . . , ωn−1}. For 0 ≤ k < n, we have
Lχ(ωk) ∼= Ω

χ

k .
(3) If λ ∈ Λ is not exceptional, then dimF Lχ(λ) = pn dimF L0(λ), while

dimF Lχ(ωk) =
{

pn
(
n−1

k

)
, 0 ≤ k < n

pn, k = n.

Proof. (2) If λ ∈ Λ is not exceptional, then Lχ(λ) ∼= Zχ(λ) by 2.6. For 0 ≤ k ≤ n, 3.8 says
Zχ(ωk) ∼= Ωχ

k , and this latter module is simple if and only if k ∈ {0, n} by 3.12. Moreover,
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for 0 ≤ k < n, 3.12 says Ω
χ

k is simple, and, since Ω
χ

k is a homomorphic image of Ωχ
k (and

hence of Zχ(ωk)), we have Ω
χ

k
∼= Lχ(ωk).

(1) Since htχ = 0, we have χ(W0) = 0. Therefore, every simple u(W0, χ)-module is
restricted and hence isomorphic to L0(λ) for some λ ∈ Λχ = Λ. It now follows from 2.2
that every simple u(W,χ)-module is isomorphic to Lχ(λ) for some λ ∈ Λ.

Using part (2), 3.8, and 3.10(1), we have Lχ(ωn) ∼= Zχ(ωn) ∼= Ωχ
n
∼= Ω

χ

n−1
∼= Lχ(ωn−1).

Therefore, it suffices to show that there are at least pn − 1 pairwise nonisomorphic simple
u(W,χ)-modules. Since u(W,χΦ) ∼= u(W,χ) for any Φ ∈ AutW , it follows from 1.2(2)
that we may assume χ(Di) = δin (1 ≤ i ≤ n).

Let λ ∈ Λ and assume λ is not exceptional. Then Lχ(λ) ∼= Zχ(λ) by part (2). Now
2.4(2) says every maximal vector of Zχ(λ) is of the form 1 ⊗ m, where m is a maximal
vector of L0(λ). Since L0(λ) has a unique maximal vector (up to scalar multiple) and the
weight of this vector is λ, we conclude that the same must be true for Lχ(λ). On the other
hand (and here is where we use the assumption that χ(Di) = δin), the proof of 3.12 shows
that if k < n−1, then every maximal vector in Ω

χ

k is a scalar multiple of y(τ) ⊗ dxα, which
is easily seen to have weight ωk, while Ω

χ

n−1 has two linearly independent maximal vectors,
namely y(τ) ⊗ dxα and y(b) ⊗ dxα. In light of the fact that Lχ(ωk) ∼= Ω

χ

k for 0 ≤ k < n

(by part (2)), we deduce that the W -modules Lχ(λ) with λ ∈ Λ, λ 6= ωn are pairwise
nonisomorphic.

(3) The first part follows from the fact that Lχ(λ) ∼= Zχ(λ) for nonexceptional λ. The
second part follows from (2), 3.10(3), and (1). ¤

4.4 Theorem. Assume htχ = 1. Let {S |S ∈ S} be a set of representatives for the
isomorphism classes of simple u(W0, χ)-modules.

(1) There are |S| distinct (up to isomorphism) simple u(W,χ)-modules. They are rep-
resented by {Lχ(S) |S ∈ S}.

(2) For each S ∈ S, we have Lχ(S) ∼= Zχ(S).
(3) We have dimF Lχ(S) = pn dimF S (S ∈ S).

Proof. (2) This is the last statement of 2.6.

(1) By 1.2(3), 2.5(1), and part (2) of this theorem, we may assume χ(W−1) = 0. Then
u(W,χ) is a graded algebra with grading induced by the grading on W and, as such,
satisfies the assumptions on the algebra A in [HN] (the argument in Example 3 of Section
2 there carries over to u(W,χ)). Then 3.2 of that paper establishes the claim. (Incidentally,
the fact that each simple u(W,χ)-module is isomorphic to Lχ(S) for some S ∈ S follows
also from 2.2 above.)

(3) This is clear from (2). ¤
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